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EXECUTIVE SUMMARY 

Commercial off-the-shelf (COTS) real-time operating systems (RTOS) provide a variety of 
services to application software within a system. As RTOS services and capabilities grow in 
complexity, it is clear that they have an increased influence on the overall system performance 
and, as such, should have consideration in the overall system safety assessment (SSA). This 
report addresses some aspects of using COTS RTOS software that may affect safety in aviation 
systems. 

Historically, aviation-based computing systems have used a federated design approach, which 
can effectively isolate functions with respect to system criticality. However, in more recent years 
manufacturers are integrating many of these functions into single computing systems with 
possibly different levels of criticality. RTOSs have become the central computing resource to 
manage these functions, and for this reason, RTOSs in integrated modular avionics (IMA) 
require a high level of scrutiny. The RTOS and the associated partitioning, both spatially and 
temporally, of such IMA systems is important to maintain effective software level separation. 
The challenge is to design a partitioning solution that enables the exchange of information 
between partitioned functions and controlled access to other shared resources (such as input and 
output devices) while keeping the partitioned functions largely autonomous and unaffected by 
other functions. 

In IMA and non-IMA systems, RTOS system performance and associated determinism is key to 
system safety in higher software levels. Complex central processing units that offer memory 
caching systems and memory management partitioning need additional RTOS considerations and 
perhaps alternate RTOS design approaches. 

Specified and unspecified RTOS features or elements can pose potential safety hazards. Some of 
these safety-related considerations with respect to several associated RTOS attributes and 
features are data consistency, dead code, tasking, scheduling, memory and input and output, and 
queuing. This list is not all-inclusive, but it does represent a set of potential issues and 
approaches to consider. It should not be used as a checklist, but rather as a means for 
understanding some COTS RTOS attributes that could need analysis and verification activities to 
meet the robustness guidance of DO-178B. 

Software level assignments of level A, B, C, or D from the system safety assessment will direct 
the rigor of analysis of safety vulnerability that the RTOS is asked to tolerate. Some of the 
elements or attributes will have little or no consideration for level D software; however, as the 
software level increases, the software vulnerability with respect to safety also increases. 

These and other functional class concerns can create a basis for a software vulnerability analysis 
(SVA). With RTOSs as the center of the computing resource in many aviation systems, it 
follows that the RTOS should be carefully analyzed for its own vulnerability with respect to 
safety. From any SSA it is apparent that the RTOS software itself needs to be developed and 
verified at a software level of safety associated with the system software levels assigned to its 
applications.   But beyond this, the COTS RTOS design and attributes should not compromise 



safety through its features, application programming interfaces (APIs), and the development 
environment itself. 

The report also makes a recommendation for stress and robustness testing of a typical COTS 
RTOS. 

Several approaches to RTOS safety implications are discussed with a detailed look at testing 
methods in general and a specific look at wrappers. This report describes techniques that may be 
used for improving system safety via proper COTS RTOS analysis. It offers several test 
strategies that may be considered to verify the effectiveness of these safety assurance techniques. 

VI 



1. SCOPE AND INTENT. 

The purpose of this report is to investigate some aspects of using commercial off-the-shelf 
(COTS) real-time operating system (RTOS) software that may affect safety in aviation systems. 
There is a trend to use commercially available RTOSs in aviation systems because of perceived 
cost and timesavings associated with using readily available COTS components. Because of the 
complexity and unknown integrity of many RTOSs, there are a number of concerns regarding 
potential aircraft safety effects. The Federal Aviation Administration (FAA) is sponsoring 
research in the area of COTS software to identify technical and safety issues regarding their use, 
as well as to identify areas to be addressed in future certification policy and guidance. A 
previous COTS avionics software study [COTS SW] identified that COTS RTOSs are a potential 
focus area for COTS in aviation software applications. This follow-on work provides an in- 
depth study into the considerations of using COTS RTOSs in aviation systems. 

COTS RTOS, for the purpose of this study, is meant to be available RTOS software that is sold 
by vendors through public offerings. The RTOS must be available to the general public and have 
at least minimal existing distribution. The RTOS may or may not have supporting DO-178B 
[RTCA SCI67] software life-cycle data available. However, it is important to note that the 
findings of this report can be applied to in-house-developed RTOSs. 

2. INTRODUCTION. 

The basic focus of the research was to identify what characteristics of the technology can be used 
to support protection and partitioning rationale such that empirical data obtained can be applied 
to protection and partitioning approaches proposed by applicants. In particular, real-time 
operating systems are being designed to provide the protection and partitioning functions for the 
applications executing on the RTOS and computer hardware. The RTOS is the "glue" between 
the application, hardware resources, system services, and input/output (I/O) devices. Without an 
understanding of the underlying concepts, approval of systems with protection and partitioning 
features of such RTOSs can be difficult and inconsistent. 

This research will be accomplished in two phases. This report summarizes the phase that focuses 
on COTS RTOS characteristics. The next phase will consider architectural strategies for COTS 
RTOS integration with software applications in aviation systems, with an emphasis on RTOSs 
and the complex hardware with which they must interface. 

3. BACKGROUND. 

Airframe and engine manufacturers, in part due to perceived cost and schedule reductions, see 
commercially available RTOSs as candidates for use in airborne-embedded software systems. 

COTS RTOSs have been approved as part of aviation systems that have no safety impact and 
those with only minor safety impact on aircraft performance and operations. However, once 
aviation system applicants propose to use them on systems with more severe safety impacts 
(major, hazardous, severe-major, or catastrophic failure conditions), the considerations of this 
report are applicable. 



Software professionals have pursued the reuse model established in the hardware arena for using 
COTS hardware components when building a system. Traditional hardware designs can be 
fabricated from subassemblies and other components. Software designers have not been as 
effective in establishing a reuse of COTS software components. Nevertheless, software 
component reuse is still sought as a means for increasing software development productivity and 
reducing development costs and schedule times. 

This report takes a detailed look into the safety and certification issues of using a COTS RTOS in 
aviation applications with potential safety impacts. RTOS attributes are detailed and their safety- 
related properties are discussed as well as considerations to address when integrating a COTS 
RTOS with an airborne software application(s) in an aviation system. 

4. ANALYSIS OF SAFETY-RELATED ISSUES IN COTS RTOS 

In real-time systems, correctness of operation depends not only on the right results being 
generated but also on the results being produced within time constraints. Timing requirements 
are an integral part of the design and implementation of a real-time system. In real-time systems 
that employ an RTOS, the correct operation of the system is dependent on the services provided 
by the RTOS. An RTOS must respond in a predictable way to unpredictable external events. 
Additionally, an RTOS should have the necessary features to effectively implement the real-time 
system (i.e., it must be an effective building block for the system) and to support safety features 
of the system. 

This section analyzes concepts related to the use of COTS RTOSs in the context of the aviation 
systems that may impact aircraft safety. It reviews common functional characteristics that RTOSs 
should possess when they are used in safety-related systems. In particular, this section 
summarizes the various time and space (memory) partitioning features and other protection 
mechanisms used by RTOSs and documents predictability issues related to these features and 
mechanisms. Further, RTOS features that may be susceptible to failures or that may cause 
concerns for safety are also analyzed. Lastly, robustness-benchmarking techniques are presented 
and approaches for handling DO-178B compliance are discussed. 

4.1 CHARACTERISTICS OF RTOSs USED IN AVIATION APPLICATIONS. 

4.1.1 Predictable Timing. 

As RTOS services and capabilities grow in complexity, it is clear that they have an increased 
influence on the overall system performance and, as such, should have consideration in the 
overall system safety assessment (SSA). An RTOS typically contains the following features to 
support deterministic timing [Timmerman 98]: 

• Multithreaded and pre-emptible execution. 

• Thread priority assignment. 

• Predictable thread synchronization mechanisms. 



• Priority inheritance mechanism, to prevent priority inversion, in which a lower priority 
task may get executed instead of a higher priority task that is ready [Tindell 00]. 

• Known and predictable timing behavior (e.g., interrupt latencies, task switch latencies, 
and driver latencies). 

The above features provide the infrastructure needed to support predictable execution times for 
tasks in a real-time system. In safety-related, real-time systems where a failure can result in a 
catastrophic, hazardous, or major failure, not only should the RTOS itself be safe but it should 
also promote the safety of the entire system by providing features that minimize the ways that 
tasks can adversely affect each other. In regards to safety, a critical feature that an RTOS should 
have is the support for partitioning of resources, in both space and time, and other protection 
mechanisms between the multiple applications executing on the same central processing unit 
(CPU) or sharing common computer resources (such as I/O devices). Partitioning has become 
increasingly important in the context of aviation systems, because more and more functionality is 
being consolidated onto single computing platforms. 

4.1.2 Federated Versus Integrated Systems. 

Aviation systems have traditionally used a federated architecture, in which many distinct 
computer systems are assigned to distinct control functions in the aircraft, and communicate with 
each other only using directed or broadcast data buses. These systems are largely de-coupled and 
only communicate as needed to perform their designated functions. One advantage of the 
federated architecture is that it provides inherent fault-containment and isolation, since faults 
cannot easily propagate from functions that are physically located in separate units. However, 
the federated system approach has its disadvantages in terms of the number of systems and 
components needed to produce, certify, and maintain. There are often many components of 
different types, increasing the cost of maintenance and upgrades. The configuration of 
components can result in an aircraft architecture where it is very difficult to analyze, verify, and 
validate. It may require constructing a very sophisticated systems integration laboratory and 
high-fidelity simulation to even approach verification and validation of all the aircraft systems' 
dependencies and interaction. However, at the system level, a federated system that only 
performs a limited set of functions can often be more easily verified and validated than a highly 
complex, highly integrated aircraft system with many functions. The federated approach also 
creates obstacles for improvements in functional or safety procedures, because adopting any new 
system-level solutions may require making changes to each of the variously affected subsystems, 
which is costly. An alternative to a federated architecture is integrated modular avionics (IMA), 
in which multiple functions, with possibly different levels of criticality, are incorporated on a 
single physical platform. One researcher [Rushby 99] views that the use of a small number of 
generic types of components will facilitate the analysis of safety. In federated architectures, there 
are many subsystems, of different kind, and the possibility that any one can fail is larger than if 
there are fewer components. Thus, fewer redundant general-purpose units might be better than 
several specific purpose units. 



4.1.3 Partitioning. 

A smaller number of computing systems means that larger numbers of functions need to share 
the same computing resource, which potentially introduces a whole new set of potential failure 
conditions that the system must address. When executing functions on the same computer 
hardware, it is necessary to protect functions from having adverse effects on one another. One 
way to provide this protection is to partition or isolate the functions of the system from one 
another. Otherwise, one function may interfere with another, causing it to no longer perform its 
intended function. Also, software functions of different software levels may be executing on the 
same computer and sharing computer resources. Partitioning and other protection mechanisms 
are valid means of protecting higher-level software functions from adverse effects of lower-level 
(less assured) software functions. 

Without partitioning, an alternative would be to assign the software level of all functions to the 
highest level of the system's functions. However, developers typically want to reduce cost and 
time constraints by developing the less critical functions to a lower level, thereby needing to 
implement partitioning and other protection mechanisms to allow that level reduction. Even 
without functions of higher and lower levels, the need for partitioning still exists in some 
systems, because functions that may independently be safe may not be safe when integrated with 
other functions sharing computer resources. 

The intent of partitioning is to control any additional hazards or failure conditions that may be 
introduced when multiple aviation functions are sharing the computer processors, memory, and 
other system resources. Therefore, the software level of the partitioning and protection 
mechanisms must be at the highest level of classification the functions being protected and 
potentially higher if the failure of multiple functions introduces more severe failure conditions 
than the functions by themselves. Partitioning provides fault containment between functions that 
allows multiple functions to execute on the same computer and in the same system. This can 
facilitate safety analysis and increase safety assurance, if properly implemented and verified. 
Ideally, partitioning and other protection mechanisms should produce a virtual impression that 
each function has control over its own computing system and system resources. Protection 
schemes should address both the space (memory) and time (CPU throughput) domains, which are 
described in the following subsections.1 

4.1.3.1 Spatial Partitioning. 

Spatial partitioning seeks to prevent a function in one partition from overwriting or corrupting 
the data space (i.e., memory) of a function in another partition. Memory protection can be 
achieved by two mechanisms. 

• First, the hardware-based method, which consists of using a memory management unit 
(MMU), can be used to perform checks whenever memory is being accessed in order to 
prevent unauthorized access to certain memory locations. Many times, MMUs are COTS 

The terms partitioning and protection are often used interchangeably in the aviation community.    In short, 
Dartitioninp is a method nfnrntprtinn partitioning is a method of protection. 



hardware devices that are provided with the microprocessor. The RTOS kernel can 
control portions of the MMU. Hardware-based spatial partitioning is the most prevalent 
form of spatial partitioning. It has a one-time cost of designing, implementing, and 
certifying the partitioning mechanism of the kernel and its supporting hardware. The 
MMUs available in most commercial processors today are overly complex and raise 
certification concerns. 

• A second choice would be to use software fault isolation (SFI), which consists of adding 
logical checks in the code at each memory access point. By examining the machine code 
of the software in a partition, it is possible to determine the destinations of some memory 
references and to statically check whether they are accurate. Indirect memory references 
cannot be checked statically, so instructions are added to the program to check the 
contents of the address register at runtime, immediately prior to its use. The SFI 
technique imposes some overhead cost by adding code to the program. It also requires an 
additional analysis and certification cost on every project. However, it is possible to 
automate much of the check procedure and to qualify a tool or toolset that can be used on 
multiple projects. 

A related concern in spatial partitioning is to save the status information of a task prior to 
switching execution to another task. The RTOS usually saves registers in the stack whenever it 
performs a context switch, potentially mixing data of different tasks of perhaps different 
assurance levels on the stack. However, it is important to save all registers, without ignoring the 
less frequently referenced ones. The content of any register that has not been saved may get 
modified by another task, which may constitute a failure condition by corrupting or overwriting 
the stack data of another task. 

4.1.3.2 Temporal Partitioning. 

Temporal partitioning ensures that each function has sufficient processing time to complete its 
operation. Temporal partitioning is closely related to schedulability of tasks in a multitasking 
real-time system; hence, both temporal partitioning and multitasking scheduling have similar 
challenges. The techniques used for scheduling tasks in real-time systems can thus be used to 
enforce temporal partitioning. However, in the case of safety-critical systems, there is added 
emphasis on using proper schedule enforcement mechanisms in order to prevent a task from 
overrunning its schedule, monopolizing the CPU, crashing the system, or comparable problems. 

Task scheduling techniques can be subdivided into two classes—static and dynamic. 

• With static scheduling, the list of tasks is executed under a fixed cyclic schedule and each 
task receives a fixed slice of execution time in a cycle. The sequence of the execution of 
these tasks is decided at design time, based on the constraint of satisfying all task 
deadlines, and it is not flexible. One advantage of static scheduling is that it is very easy 
to prove that task deadlines will be met with the proposed schedule. However, static 
scheduling techniques can have potentially long response times to external events, such as 
interrupts, which can only be serviced when the corresponding interrupt service routine is 



scheduled to run. In addition, tasks are scheduled for their entire duration (period), even 
if they have nothing or very little to process. 

• With dynamic scheduling, there is no predefined schedule, but priorities are assigned to 
tasks at design time so that a higher priority task may pre-empt a lower priority task that 
is executing. At any given time, the highest priority task that is ready to execute is 
allowed to execute. Under certain circumstances, priority assignment techniques such as 
Rate-Monotonic Scheduling (RMS) and Deadline-Monotonic Scheduling (DMS) [Liu 73, 
Tindell 00] can be shown to guarantee that tasks meet their deadlines under all 
circumstances. RMS assigns priorities to tasks monotonically, based on the period of the 
task—the smaller the period, the higher the priority of the task. RMS assumes that task 
deadline equals task period. DMS is a generalization of RMS, with the assumption of 
task deadline being less than or equal to its period. Priorities are assigned monotonically, 
based on the deadline of the task—the shorter the deadline, the higher the priority. 

Hardware interrupt timers, or watchdog timers, are sometimes under the control of the RTOS 
kernel and may be used as a mechanism to prevent a task from overrunning its schedule. 

4.1.3.3 Interpartition Communication. 

If the goal of partitioning were to simply keep one partitioned function isolated from another, 
then it would be a relatively straightforward problem to address. However, in reality, partitioned 
functions may need to communicate, and they may require access to other shared resources (such 
as I/O devices, queues, and buffers) at the same time. Hence, the challenge is to design a 
partitioning solution that enables the exchange of information between partitioned functions 
(e.g., interpartition communication) and controls access to other shared resources (such as I/O 
devices) while keeping the partitioned functions largely autonomous and unaffected by other 
functions. Interpartition communication and sharing of I/O devices influences both the space and 
time aspects of partitioning and protection mechanisms. 

In the case of interpartition communication, the space can be partitioned by using the kernel as a 
trusted intermediary between partitioned functions, where the kernel copies data from one 
memory space to another. Another way is to reserve separate memory space for communication 
between each pair of partitioned functions. For communication between partitioned functions 
and devices, there are several approaches for space partitioning. For processors with memory- 
mapped I/O, in which a device is only accessed by one partitioned function, the device may be 
mapped into the memory space of that particular partition and mechanisms such as MMU and 
SFI can be used. If access to a device is shared between partitioned functions, special device 
management partitions can be implemented that control several devices and are trusted to keep 
them separate. 

Interpartition communication and communication with I/O devices can also affect the time- 
partitioning model in use. For instance, if a servicing partition fails to respond, another partition 
might wait indefinitely for the data or service from the servicing partition. Therefore, the RTOS 
should provide alternative mechanisms to prevent this from happening. Communication between 
partitioned functions and devices should also be managed by the RTOS (e.g., using device 



management partitions), because a partitioned function may hold a device indefinitely. The use 
of other cross-partition interference, such as locks and semaphores, should also be limited. 

4.1.3.4 Cache Memory and Partitioning. 

An area that deserves particular attention is the use of cache memory in a partitioned computer 
platform environment. A cache is typically small-size, high-speed memory, or a hierarchical set 
of memory, that resides between the CPU and the main memory. A cache is an intermediate 
memory storage location, which has rapid access times. The role of the cache is to match the fast 
speed of the processor to the slower speed of the main memory. Cache memory contains a copy 
of the most frequently accessed memory locations, Which can reduce the overall memory access 
time. The use of cache can lead to nondeterministic execution time for functions, depending on 
how much of the data needed by the function is available in cache. This behavior may be further 
aggravated by the fact that cache is typically a shared resource among partitioned functions, 
which may lead to cross-interference among partitioned functions in the time domain, and violate 
the partitioning protection. Depending on the state in which the cache memory is left by a 
function in a partition, the execution time of the next function scheduled to execute may vary. 
Even though the execution time of a function is nondeterministic due to cache, it is still bounded 
by the worst case of having all accesses directly to and from main memory. Since worst-case 
analysis is crucial in safety-critical, real-time systems, timing analysis and scheduling to tasks 
should address protection of the partitioned functions considering the presence and use of cache 
memory. Interference of cache in the spatial domain can be controlled using memory protection 
mechanisms such as MMU and SFI. However, the use of cache introduces an additional concern 
of maintaining cache coherency. Cache coherency keeps consistent multiple copies of a single 
variable, so that the cache swapping is valid at all times. Changing a datum only in cache or 
main memory, without reflecting it in its copied version, may result in inconsistent or erroneous 
behavior. Techniques for preserving cache coherency should be verified, and the overhead of 
additional timing or interactions with the CPU should be accurately analyzed and addressed in 
worst-case scenarios. 

4.1.3.5 Additional Partitioning Considerations. 

Static scheduling of tasks may not be appropriate if partitioned functions frequently need to wait 
for data from other partitioned functions or devices, since the function that is waiting for service 
may waste CPU time. Also, with static scheduling, if a critical interrupt is sent to a partitioned 
function that is not actively running, servicing of that interrupt will have to wait until that 
partition function is scheduled, thus response time may suffer. In such cases, dynamic 
scheduling may be more flexible, although more difficult to verify. However, one should address 
how other partitioned functions may interfere with timing of a partition, and also address the 
worst-case overhead of context switching by the kernel to ensure performance and timing 
requirements can be met. For instance, a faulty partitioned function may repeatedly issue a 
request for CPU time, which may produce significant overhead and interfere with the execution 
time of a given function. In this case, it is important to establish hard maximum quotas of time 
allocation for a partitioned function, and quota for interrupts and invocation of kernel functions 
can be deducted from the quota of the issuing partitioned function. 



Regardless of the mechanism chosen for partitioning, the operating system is an essential 
component in the implementation of the mechanism. In a traditional operating system, all 
operating system services may be accessible to all applications, which make the safety analysis of 
the operating system more difficult. Rushby deals with the complexities of partitioning in space 
and time and other protection mechanisms by proposing alternative operating system architecture 
[Rushby 99]. The proposed alternative suggests an arrangement that allocates operating system 
services separately within each partition. Critical applications may use a minimal set of services, 
whose robustness may be easier to verify, while less critical applications may employ something 
closer to full-fledged commercial operating system services. In other words, operating system 
services may be allocated within the confines of certain partitions, leaving mainly the kernel as 
the only common resource between partitions. 

4.2 RTOS SPECIFIC FAILURES WITH POTENTIAL SAFETY IMPACT 

This section analyzes aspects of an RTOS that may be the most susceptible to failures or that 
may cause concerns for safety. When developing an RTOS for the aviation domain, RTOS 
developers or users should document any failure or safety concerns, the severity, and their 
approach for addressing the problem. For example, one safety requirement is to prevent run-time 
errors that could compromise the continued safe operation of the system. Some of the potential 
failure conditions associated with this requirement are erroneous data, improper implementation 
of the RTOS requirements specification, and incorrect calculations or operations performed bv 
the RTOS. y 

Each of these failure conditions can be further decomposed into areas of concern with respect to 
software vulnerability based on the RTOS function used. A software vulnerability analysis 
(SVA) can identify areas of potential anomalies, which can be provided as input not only to a 
robustness or stress-test plan, but also to a system functional hazard analysis or SSA. How an 
SVA is conducted is up to the RTOS developer or applicant, but table 1 identifies the areas of 
concern with regards to RTOSs and can be used as a basis for establishment of an SVA. 

It is not possible to perform a vulnerability analysis without referring to a specific RTOS 
implementation. Two RTOSs that offer the same feature may implement the feature in vastly 
different manners, and the vulnerability analysis results will depend on the implementation of the 
feature. 

A review of a recent paper [Kleindermacher 02], along with a study of a representative example 
of RTOSs, reveals the following areas of concern, as listed in table 1.   The table does not 
represent an exhaustive list of RTOS concerns with respect to an SVA, and for any given RTOS 
the areas of concern will differ. 



TABLE 1. RTOS AREAS OF CONCERN BY FUNCTIONAL CLASS 

Number Functional Class Concern Description 
Dl Data consistency Data corruption or loss within 

the RTOS by the RTOS itself 
Data, which is visible to the RTOS, is corrupted 
or "lost" by the RTOS. 

D2 Data consistency Input data corruption or loss 
by the RTOS 

The RTOS incorrectly handles input data or loses 
it by storing it incorrectly, or incorrect data values 
are assigned to data variables or returned as 
results. 

D3 Data consistency Erroneous data or results 
caused by incorrect 
calculations or operations by 
the RTOS 

Incorrect data values assigned to data variables or 
returned as results. 

D4 Data consistency Abnormal parameters Calculations performed by the math library 
functions may return unpredictable small numbers 
if the values passed as parameters are abnormal. 

Cl Inclusion of 
deactivated code 
or dead code 

Inclusion of deactivated code Unused functions may be loaded with the 
application even though they are never called. 
This activity can also be dependent on a linker or 
loader that is used to link the executable code into 
the executable image and/or load the image into 
the target computer memory. Unintended 
activation of this code may have unknown effects, 
typically leading to system failure. 

C2 Inclusion of 
deactivated code 
or dead code 

Generation of dead code Additional software is generated by the compiler 
or linker, which is not verified during 
requirements-based testing or coverage analyses. 
This is especially a concern for Level A 
applications where the applicant needs to 
"account" for executable object code that is not 
traceable to source code; it can result in dead 
code, and compiler generated code can result in 
code that is not exercised during requirements- 
based test, nor is it included in structural coverage 
analysis which is typically performed at the 
source code level. Compiler- or linker-generated 
object code is not exempt from satisfying these 
objectives for compliance to requirements and 
robustness for Levels A-D and for low-level 
requirements for Levels A-C. 

Tl Tasking Task terminates or is deleted The task runs to completion or is deleted by 
another task. If the programming model requires 
a task to run forever, in a never-ending loop, then 
the API call to delete the task should be removed. 

T2 Tasking Kernel's storage area overflow A central storage area in the kernel, which holds 
task control blocks and other kernel objects, may 
run out of space due to a malicious task that 
constantly allocates new kernel objects that may, 
in turn, affect execution of other tasks. A quota 
system should be implemented to protect other 
tasks in the system. 



TABLE 1. RTOS AREAS OF CONCERN BY FUNCTIONAL CLASS (Continued) 

Number 
T3 

SI 

S2 

S3 

S4 

S5 

S6 

Ml 

M2 

M3 

Functional Class 
Tasking 

Scheduling 

Scheduling 

Scheduling 

Scheduling 

Scheduling 

Scheduling 

Memory and I/O 
device access 

Memory and I/O 
device access 

Memory and I/O 
device access 

Concern 
Task stack size is exceeded 

Corrupted task control blocks 
(TCB) 

Excessive task blocking 
through priority inversion 

Deadlock 

Description 
The task stack is overwritten leading to 
unpredictable system behavior and stack data 
corruption.  
TCB's may be corrupted, which compromises the 
scheduling operations of an RTOS. Scheduling 
information data should be protected from access 
from user software applications. 
A user task of high priority may be excessively 
blocked by a low-priority task because they share 
a common resource and an intermediate task pre- 
empts the low-priority task. 

Tasks spawns additional tasks 
that starve CPU resources 

Corruption in task priority 
assignment 

Service calls with unbounded 
execution times 

Fragmentation of heap 
memory space 

An incorrect pointer 
refercncing/de-referencing 

Data overwrite 

If two tasks both require the same two resources 
but they are scheduled in an incorrect sequence, 
then they may cause a deadlock by blocking each 
other. 
New tasks spawned by an existing task may affect 
the schedulability of all tasks in the system. User 
applications should not be allowed to spawn new 
tasks at their own will. 
Increasing or decreasing the priorities of tasks in 
the system may lead to the task set not being 
schedulable or the system not responding in a 
timely manner. The ability to change the priority 
of a task should be limited to special cases, such 
as to prevent the occurrence of priority inversion. 
Schedulability of tasks is impacted if there are 
kernel service calls that have unbounded 
execution time. The execution time of a task that 
makes such service calls may itself be affected, as 
well as accounting for the kernel's overhead while 
switching between tasks. Kernel service calls 
should have bounded execution time regardless of 
system load conditions. 
Allocation, de-allocation, and the release of 
memory from the heap may lead to fragments of 
free memory, which complicates future 
allocations and may compromise timing analysis, 
making it unpredictable. Dynamic memory 
allocation, de-allocation, and "garbage collection'' 
should be very limited and controlled. 
An incorrect reference to an object, such as a 
semaphore, may be passed to the kernel via a 
service call, which can have disastrous results. 
The kernel should check validity of pointer 
references. 
Data is written beyond its allocated boundaries 
and overwrites and corrupts adjacent data of other 
functions in memory.         
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TABLE 1. RTOS AREAS OF CONCERN BY FUNCTIONAL CLASS (Continued) 

Number Functional Class Concern Description 
M4 Memory and I/O 

device access 
Compromised cache 
coherency 

Increased access time occurs due to cache misses. 
This occurs when needed data is not available in 
cache and data must be accessed from other 
typically slower memory. Data loss due to missed 
memory updates. 

M5 Memory and I/O 
device access 

Memory may be locked or 
unavailable 

The MMU page tables may be incorrectly 
configured or corrupted such that access to a 
region of memory is prevented. 

M6 Memory and I/O 
device access 

Unauthorized access to critical 
system devices 

Unauthorized access to I/O devices may lead to 
improper functioning of the system. The kernel 
must implement mandatory access control to all 
critical devices. 

M7 Memory and I/O 
device access 

Resources not monitored Proper allocations and usage of resources are to 
be monitored, otherwise resource could be 
deadlocked 

Qi Queuing Task queue overflow May experience loss of information or change in 
scheduler performance. May result in missed 
schedule deadlines and incorrect task sequencing. 

Q2 Queuing Message queue overflow Messages may be missed, lost, or delayed if the 
queue is not properly sized or messages are not 
consumed promptly unless this is protected. 

Q3 Queuing Kernel work queue overflow The work queue is used to queue kernel work that 
must be deferred because the kernel is already 
engaged by another request and the queue is full. 
Kernel work deferred to the work queue must 
originate from an interrupt service routine. The 
work queue may overflow if the interrupt rate is 
too high for the kernel to process tasks within the 
allotted time frame. 

11 Interrupts and 
Exceptions 

Interrupts during atomic 
operations, such as task 
switching 

Certain operations that work on global data must 
complete before subsequent operations can be 
invoked by another task of execution. An 
interrupt arriving during this period may cause 
operations that modify or use a partially modified 
structure, or the interrupt may be lost if interrupts 
are masked during critical code execution. 

12 Interrupts and 
Exceptions 

No interrupt handler No interrupt handler has been defined for an 
interrupt. A default interrupt handler should be 
provided by the RTOS if the user has specified 
none. 

13 Interrupts and 
Exceptions 

No exception handler No exception handler has been defined for an 
exception raised by a task. A default exception 
handler should be provided to suspend the task 
and save the state of the task at the point of 
exception. 

14 Interrupts and 
Exceptions 

Signal is raised without a 
corresponding handler 

A signal may be sent by a task to another task or 
by the hardware under defined exception 
conditions. 

15 Interrapts and 
Exceptions 

Improper protection of 
supervisor task 

Supervisor task that is invoked, due to an 
exception, runs in an unprotected address space 
that may be corrupted. 
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4.3 ROBUSTNESS BENCHMARKING TECHNIQUES. 

Various methods have been developed over the years to assess the robustness of COTS operating 
systems. The following description summarizes some of the methods. 

An early method, called CRASHME [Carrette], operates by writing random data values to 
memory. Several tasks are then spawned to execute those random bytes as concurrent 
programs. The method relies on pure chance of the execution of the tasks with random 
data causing the system to crash. 

• Similarly, the Fuzz approach [Miller 90, Miller 98] also relies on random data injection, 
but it tests specific operating system elements and interfaces (as opposed to the 
completely random approach of CRASHME). Fuzz compares the quality of open-source 
operating systems versus commercial operating systems. The results concluded that 
open-source operating systems were more robust than commercial ones, based on 
robustness measures. 

• The Ballista work [Koopman 00] is similar to Fuzz, except that operating system function 
calls are used instead of application level software, as well as combinations of valid and 
invalid data. The Ballista robustness testing system tests the exception handling 
capabilities of application programming interfaces (APIs) of portable operating systems 
interface (POSDC) -compliant operating systems. The basic idea in Ballista is to focus on 
the data types of the system calls and not the actual calls. This makes the definition of the 
test cases to be carried out very simply. For each data type some test values are defined, 
representing common values as well as boundary values. For every system call, all the 
combinations of the test values are used to produce the test cases. Each test case is 
executed one at a time and after the execution the result is interpreted according to the 
CRASH (catastrophic, restart, abort, silent, hindering) severity scale. Tests using Ballista 
were conducted on 15 POSIX operating system versions and identified many instances of 
exceptional conditions being handled in a nonrobust manner; some leading to complete 
system crashes. 

• Another tool, called MAFALDA (Microkernel Assessment by Fault-injection AnaLysis 
and Design Aid) [Fabre 00] gathers information on the failure modes of microkernels and 
helps to integrate them into safety-critical systems using wrappers. MAFALDA classifies 
the failure modes of the microkernel by using both classical software fault injection and 
parameter fault injection, like Ballista. 

To date, no evidence has been shown that these have been used for certification activities in civil 
aviation applications. However, some of these approaches could possibly be used to help 
augment robustness testing. 

5. STUDY OF RTOS SAFETY ASSURANCE TECHNIQUES. 

DO-178B section 6.4.2.2 requires robustness testing for Levels A, B, C, and D software. As 
such, to meet the robustness requirement for a highly integrated and complex RTOS, an SVA 
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could be conducted and corresponding robustness and stress testing could be developed to meet 
the robustness guidance in DO-178B. This is particularly significant for COTS RTOSs since 
aspects of the design and verification data for a COTS RTOS may not be available. 

An RTOS SVA is not a requirement per DO-178B, and one could offer that any application using 
a COTS RTOS that meets the objectives of DO-178B clearly is in compliance. The basis for 
recommending a COTS RTOS vulnerability analysis is that the highly integrated nature of 
today's COTS RTOSs coupled with complex microprocessor architectures of modern processing 
systems may well indeed influence the overall system safety, particularly in the time, space, and 
resource domains. 

The following sections (1) describe the techniques that maybe used for improving system safety 
of COTS RTOS, (2) describe the test strategies that may be considered to verify the effectiveness 
of these safety assurance techniques, and (3) investigate the fault-containment techniques to 
protect against the effects of unintentional functions and failures in an RTOS. 

5.1 TECHNIQUES FOR IMPROVING SYSTEM SAFETY AND PROTECTION FROM 
FAILURES IN AN RTOS. 

Several techniques exist to help system safety with respect to COTS RTOS-based products. 
Some techniques are used by the end user of the RTOS (i.e., the system integrator), while other 
techniques would be implemented as part of the COTS RTOS development. The techniques can 
be grouped into the following general categories, based on the how they seek to improve system 
safety: 

• Prevent the presence of defects in the RTOS (i.e., fault avoidance), which can be 
accomplished by proper design assurance. 

• Analyze and test the COTS RTOS and remove any defects if present. 

• Protect against remaining defects  in the  COTS  using wrappers  or other similar 
techniques. 

A combination of techniques is often employed for increased safety assurance of the end product. 
The first group of techniques (fault avoidance) usually depends on the efforts of the COTS 
developer. Stringent development practices and adherence to software development guidelines 
and standards (drafted by various safety-related industries) can help to prevent defects and obtain 
acceptance of the COTS product in a particular target domain. Extensive studies in the field of 
software engineering have focused on software development processes, and in the case of safety- 
critical systems, the most important consideration is to incorporate safety as an integral part of 
the design and development process; i.e., it should not be an afterthought. In the end, in the case 
of the safety-critical applications, the applicant must be able to present sufficient evidence (or 
provide supporting material to help the system and software developer and COTS user present 
the evidence) of compliance to a particular standard for the end-user application domain. 
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5.2 TEST METHODS. 

Some design and verification techniques used on the COTS RTOS are key to its relative system 
safety affects. Access to COTS development data is essential to properly assess the development 
and verification activities especially for higher software levels; unfortunately, many COTS 
products lack this data. However, a survey conducted for this research project revealed that 
aviation systems manufacturers striving to develop the most critical systems (i.e., Levels A and 
B) are seeking vendors who have considered DO-178B guidance in their COTS RTOS 
development. As such, the DO-178B software life-cycle data can be made available to the user 
as part of the service agreement. Independent and supplemental testing is still required and a 
variety of techniques can be used. 

Methods used to test software in general also apply for testing of COTS RTOS. The purpose of 
testing is to detect faults in the component under test, i.e., to identify discrepancies between the 
specifications of the RTOS and its actual behavior.   The vendor must perform the necessary 
component testing of the RTOS to verify its compliance to all the requirements specifications 
which includes those related to safety. The vendor should also test the RTOS with representative 
software applications executing on the RTOS, and to demonstrate RTOS robustness  should 
execute rogue application testing where the rogue application(s) attempts to violate the 
partitioning and other protection mechanisms offered by the RTOS. The certification applicant 
using the COTS RTOS must ensure that the RTOS is properly integrated into the final product 
such that appropriate software integration testing, hardware-software integration testine  and 
system-level testing are performed. 

Testing of an RTOS consists of subjecting the RTOS to a variety of test cases. Clearly no set of 
test procedures can achieve 100% test coverage in a practical amount of time. Combinatorial 
explosion is a term often used to refer to the unbounded increase in the number of test cases that 
results from choosing different combinations of input values for each test case. Even for 
moderately complex software, the number of test cases required to adequately test the RTOS may 
be impractical. Test cases are thus chosen in a manner such that test cases exercise different 
aspects of the RTOS to maximize the test coverage. Defects found during testing can be fixed by 
the user, if source code is available, or with support from the vendor. Alternatively test results 
can provide information that can be used to appropriately design wrappers or other schemes for 
shielding the system and software applications from the RTOS defects. Testing of an RTOS can 
be subdivided into the following subcategories, based on how test cases are selected: 

• Stand-alone testing, including: 

Requirements based (black box) 
Structural based (white box) 
Random testing (black box) 
Error seeding or fault injection based (white box) 
Equivalence class and boundary testing 
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• Testing of an RTOS in a target system with actual or representative software applications 
integrated, comprised of: 

Requirements-based testing (functions as intended) 

Robustness or stress testing    (has no unintended functions, side effects, or 
anomalous behavior) 

Some of the testing methods require knowledge of the source code (white-box testing), while 
others make no assumption about the inner workings of the unit under test (black-box testing), 
which is an important consideration in the case of COTS. Each of these techniques is discussed 
in detail below. 

5.2.1 Stand-Alone Testing of an RTOS. 

Stand-alone testing of the RTOS is equivalent to software component testing; i.e., the RTOS is 
tested in isolation from other components of the target system. Conceptually, both requirements- 
and structural-based approaches subdivide the input domain into a number of logical subsets, 
according to some criteria, and select a number of elements from each subdomain as test cases. 
The criterion employed for subdividing the input domain distinguishes the two approaches, 
which are further described below. 

5.2.1.1 Requirements-Based Testing. 

In requirements-based approaches, input data are selected from partitioned sets that effectively 
test the functionality specified in the requirements specification of the RTOS. Hence, 
partitioning of tests is based on selecting inputs that invoke a particular aspect of the RTOS's 
functionality. Testing involves the observation of the output states, given the inputs, and thus, no 
analysis of the internal structure of the RTOS is attempted. Therefore, requirements-based test 
approaches are a type of black-box testing. Requirements-based approaches can use the 
equivalence class techniques discussed below. 

An example of requirements-based testing of RTOSs is the Ballista project [Koopman 00], which 
tests only the exception-handling capabilities in a POSIX-compliant operating system. In the 
Ballista project, subdividing the input domain into subdomains, with each subdomain containing 
one API function call, derives test cases. A test case consists of the name of the function call and 
a single-test tuple that are passed as parameters. The general Ballista approach is to not only test 
the requirements but also test the robustness of a single call for a single-test tuple, and then 
iterate this process for multiple test cases such that each has different combinations of valid and 
invalid test values. The Ballista testing methodology involves automatically generating sets of 
exceptional parameter values to be used in calling software applications. Tests performed on 
over 15 operating systems concluded that none of the RTOSs tested displayed a high level of 
robustness. 
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5.2.1.2 Structure-Based Testing 

Structure-based testing approaches are a form of white-box testing. The basis for the subdivision 
of the domain is not the functional specification of the system or what the system should do, but 
what the underlying code and structure of the RTOS is itself. Structure-based approaches devise 
subdomain partitions that attempt to provide coverage by exercising necessary elements of the 
code that constitute the RTOS. Under the guidance of DO-178B, structural verification is 
conducted on software Levels A, B, and C. The approach encouraged by DO-178B is to conduct 
a structural coverage analysis based on the systems functional requirements already tested. These 
elements for analysis relate to structural elements and architecture of the program such as 
statements, edges, paths, or the data flow characteristics of the program. A basic requirement is 
for each program element to be executed at least once, which results in complete structural 
coverage and associated analysis per DO-178B. It is important to note that structure-based 
testing alone does very little towards meeting DO-178B and that it is really the analysis that is the 
mechanism for discovering structural deficiencies. The discoveries during this analysis and 
testing also include revealing dead code and improper use of deactivated code. The structural 
coverage analysis can also point out shortcomings in the requirements-based test cases or 
procedures. With respect to the guidance of DO-178B, what this implies for software Levels A, 
B, or C is that the COTS RTOS must either be accompanied by a structural coverage analysis or 
the applicants must conduct the analysis by themselves. In the latter case, availability of the 
COTS RTOS source code is required, which is not always possible with COTS RTOS. 

Particularly acute problems that can occur with structure-based approaches are that there is no 
guarantee of coverage unless the structural coverage analysis is conducted. It also suffers from 
combinatorial test case explosion if the code lacks effective design structure. Further discussion 
regarding structural coverage analysis is available in [RTCA SCI90] Frequently Asked 
Questions 42, 43, 44, and Discussion Paper 3 of DO-248. 

5.2.1.3 Random and Statistical-Based Testing. 

Statistical-based techniques rely on the assumption of random and statistical nature of defects to 
exercise a program with the aim of causing it to fail. Two approaches that fall under this 
category are random testing and error seeding (a.k.a., fault injection-based testing). (Error 
seeding is discussed in more detail in section 5.2.1.4.) This type of testing can be correlated to 
robustness testing with respect to DO-178B; however, for higher level of criticalities, it lacks a 
completeness and coverage argument. 

Random testing is a black-box testing approach in which test cases are derived at random. This 
avoids possible bias in only testing known features of the software. Random testing is simple 
and quite easy to automate. One problem with random testing is that it is possible that, at the 
end, only a section of the software may have been tested. In addition, random testing is not 
repeatable, so it is hard to take credit for certification purposes. Random testing is, thus, best 
used to complement the other testing techniques described in this report. The CRASHME 
approach is a representative example of random testing of robustness of an RTOS. 
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5.2.1.4 Error Seeding or Fault Injection-Based Testing. 

Error seeding is a unique technique for testing in which some carefully devised known defects 
are injected (seeded) into the code that is to be tested. Test cases are then applied to the program 
containing the known defects and possibly a number of unknown defects. Assuming that the 
seeded defects are typical defects, it can be argued that the ratio of the known defects found 
during testing and the total of the known defects is the same as the ratio of the unknown defects 
found and the total of the unknown defects. This allows for statistically estimation of the number 
of remaining defects in a program. This is a way of building confidence that the test cases used 
are somehow valid in uncovering the various types of defects. Unfortunately, there is no 
guarantee that all defects will be revealed. The effectiveness of this technique is heavily 
dependent on the knowledge of the types of defects in the system and of the test cases that can 
uncover them. In addition, this technique is a type of white-box testing that requires availability 
of source code, which may not be available with COTS components. 

5.2.1.5 Equivalence Class and Boundary Testing. 

With equivalence class techniques, each input condition is partitioned into sets of valid and 
invalid classes called equivalence classes. These are, in turn, used to generate test cases by 
selecting representative values of valid and invalid elements from each class. In this approach, 
one can reasonably assume (but not with 100% certainty) that a test of a representative value of 
each class is equivalent to a test of any other value. Testing of boundary values can also be 
conducted at this level. 

The requirements-based approach of dividing the test domain into equivalence classes is, in 
general, ineffective in testing combinations of input circumstances. However, most hard to 
detect faults are due to a combination of, or a sequence of, inputs to the system. Another major 
issue is that of the rapid proliferation of test cases needed for adequate coverage (combinatorial 
explosion). Another difficulty is in determining the granularity level of the equivalence classes. 
In most typical situations, it is hard to predict the correct level of granularity of the equivalence 
classes prior to testing. Requirements-based testing is also unable to find nonfunctional failures 
(e.g., task schedule or task queue overruns, failure from presence of dead code, etc.). 

5.2.2 Testing of an RTOS in a Target System. 

The RTOS must be tested in the target environment, integrated with the actual or representative 
software applications that will run in the target system. This testing is referred to as 
requirements-based integration testing and requirements-based hardware software integration 
testing in which applications are gradually integrated and tested in the RTOS platform. It also 
provides for the inclusion of all the applications in the target system (system testing) and 
culminates with more rigorous, robustness testing where rogue applications may attempt to 
violate the RTOS protection mechanisms and invalid data and worst-case interrupts and events 
are introduced to determine how robust the system is. The process of incrementally adding 
applications (modules and partitioned functions) makes it easier to detect faults during 
integration testing. System and robustness testing are still needed after integration testing 
because, while the interaction between all different modules may have been tested during 
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integration testing, task loading and contention of RTOS resources may not have been effectively 
tested. 

In general, stand-alone testing of the RTOS is likely to cover the overall functioning of the 
operating system in more breadth and probably more rigorously check each functional feature. 
On the other hand, integration and system testing using other applications, tests the RTOS in the 
confines of the target environment. Integration testing on a target system may only test a 
narrower portion of the system in more depth, but it is likely to exercise a greater number of test 
cases in the subset of the code that is going to be more heavily used. While unit testing focuses 
mainly on the internal properties of the component being tested, integration and system testing 
can uncover inconsistencies in the interaction among the units. Performing integration and 
system testing only, without stand-alone testing of the RTOS, may leave untested unused code in 
the RTOS, which may lead to potential safety hazards during operation. 

System-level testing is subdivided into different classes of testing, depending on which aspect of 
the system needs to be verified, such as functional (requirements-based) testing, robustness 
testing, and stress testing. 

• Functional testing uncovers the differences between functional requirements and 
functional behavior of the system and demonstrates that the system satisfies "functional" 
requirements. 

• Robustness testing extends the boundaries set by functional tests, by subjecting the 
system to unconventional conditions, such as various fault scenarios and invalid inputs, in 
order to try to crash the system. The motivation behind applying robustness testing 
comes from an observation that most system failures occur during unusual scenarios that 
are easily overlooked, or hard to conceive, during unit testing. 

• Stress testing subjects the system and software to the extremes of real-time workloads, 
large data volumes, repetitive operations, and operations for extended periods of time' 
The purpose of stress testing, also called load testing, is to measure characteristics such as 
response time and memory utilization under data and transaction loads, which is 
particularly crucial in the case of RTOS. For instance, the task switching time in an 
RTOS may be dependent of the number of tasks in the ready queue. Thus, the worst-case 
condition needs to be evaluated. Benchmarking techniques can be very helpful when 
trying to measure key performance criteria of an RTOS. Important features to be 
measured are task switching time, pre-emption time, interrupt latency, semaphore 
shuffling time, deadlock breaking time, memory allocation/deallocation time, and 
message passing time. Adequate instrumentation to perform the measurements is an 
issue in this type of testing. 

5.3 COTS FAULT-CONTAINMENT TECHNIQUES. 

A variety of fault-containment techniques can be used; this report focuses only on those 
techniques for COTS RTOS software. Fault-containment techniques complement the efforts of 
fault prevention and fault-testing mechanisms that were described above.   Fault-containment 
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techniques are needed when faults cannot be removed or, as a precautionary measure, when one 
is not sure whether the component can be considered fault-free. Fault-containment strategies are 
particularly useful when dealing with COTS software, since source code may not be available, 
and the only alternative may be to isolate, or contain, specific faulty behaviors. The approach, 
therefore, is to use untrustworthy COTS software in a way to provide assurance by other means 
that the COTS software will not impact the safety, functionality, and performance of the entire 
system. 

The partitioning methods discussed in section 4.1.3 can essentially be viewed as fault- 
containment techniques for application-level faults (not the RTOS level). Partitioning is a 
system approach for fault containment of application errors, which requires RTOS-level support. 
Similarly, other software and hardware features that can contribute to the process of fault 
containment are value monitors and timing monitors [Jaffe 00]. Value monitors correspond to 
additional logic blocks whose purpose is to check the validity of results generated from the 
subsystem being monitored. Value monitors can be viewed as additional safety checks that can 
be quickly identified when results do not make sense (i.e., negative altitude information being 
generated). The key idea is that value monitors should use a relatively simple logic (that is easier 
to validate) in order to test the validity of results generated from a more complex subsystem. 
Timing monitors (such as watchdog timers and heartbeat and activity monitors) are devices used 
to monitor things such as task schedule overruns and nonresponsiveness of tasks. Timing 
monitors can generate interrupts to signal the violation of a timing schedule. 

Besides protecting the system against application-level faults, it is necessary to protect against 
faults in the COTS RTOS itself. Fault containment in COTS RTOS is typically achieved by the 
use of wrappers. A wrapper (a.k.a., invocation filter or mini-API) is middleware used between 
the software applications and the RTOS API. A wrapper can prevent the invocation of unwanted 
features in the RTOS. Wrappers can be designed at different levels of complexity. Some 
wrappers may bypass most API calls and concentrate on intercepting specific API calls that are 
deemed as being problematical. Wrappers can also intercept and perform logical checks into 
APIs to ensure that the user function is properly calling the API. This would be useful, for 
example, in RTOSs that lack proper exception handling, such as those tested using Ballista. As 
an alternate use, wrappers can complement the original API by implementing additional features 
desired by the application but are not provided in the original COTS software. Many COTS 
RTOS vendors and applicants suggested that wrappers are the fault-containment technique of 
choice and, as such, wrappers are discussed below in more detail. 

5.3.1 The Role of Wrappers in COTS RTOS-Based. Safety-Critical Systems. 

A software wrapper is a software layer used to protect, isolate, or interface to another component. 
Wrappers are viable candidates to protect COTS components within a system, without 
modification to the COTS component. Wrappers can be used to enhance a wrapped COTS 
component functionality, thus allowing it to meet all the targeted system requirements. In 
addition, wrappers can be used to mask COTS functionality that is not used in the new system 
implementation. 
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5.3.2 Wrappers—Interface Abnormalities. 

Wrappers can be used to address three major issues with respect to employing COTS 
components in general: 

• Consistency of operation of a COTS component is insufficient or not established by 
adequate evidence. 

• Specification of the COTS component is incorrect or incomplete. 

• COTS components are to be employed in a different context from that of the original 
design. 

Wrappers can take action in response to detection of an abnormal circumstance at the RTOS 
interface (i.e., either input or output). Wrappers may be used to mitigate certain input conditions 
for which the COTS RTOS is known (or suspected) to produce anomalous behavior in the 
system. Input conditions that should be addressed include the following [Popov 01]: 

Inputs outside the domain intended, by system designers, for the COTS. 

Inputs outside the domain where the system designers consider the COTS trustworthy. 

Inputs in a domain for which the COTS is known to produce anomalous behavior. 

Inputs that are illegal per the COTS specification. 

Inputs determined to be erroneously generated by the system. 

Inputs generated by the system that are illegal outputs of the system, per the system 
specification. 

These input conditions are determined through knowledge of the system design, the COTS item, 
and the operating modes of the system. Wrappers can also be used to mitigate certain COTS 
component output conditions, which are known to produce anomalous behavior. Output 
conditions that should be addressed include the following [Popov 01]: 

• Outputs that are illegal for the COTS component, relative to its specification. 

• Outputs that are determined to be erroneous. 

• Outputs that are in a domain considered risky for the system. 

• Outputs indicative of a COTS component, which used internal functions that are not 
trusted. 
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5.3.3 Wrappers—Responses to Interface Abnormalities. 

The wrapper response is specified as part of the system design. Actions may range from simply 
reporting the abnormal circumstance to providing alternate functionality. Popov suggests 
wrapper actions may include the following: 

• Report exceptions, erroneous outputs, erroneous inputs, anomalous behavior, errors 
detected. 

• Substitute safe or default parameters or outputs or move the system to a safe state. 

• Redirect action to alternate or default function such as a backup or simplified version. 

• Retry previous actions that produced the current abnormality. 

It has been suggested that the third most frequent cause of COTS design errors are discovered in 
the error-handling portions of the code [Ghosh 99]. For COTS, wrappers provide a good 
mechanism to address these "bugs," as they become known, through input and output screening. 

5.3.4 Wrappers in a Kernel. 

A loadable kernel module is sometimes the basis of wrapper implementations for COTS RTOSs. 
This approach has been the focus of recent research and development in the security domain, for 
mission critical systems [Fräser 99]. The [Fräser 99] research is summarized as follows: 

1. Wrappers are run in kernel mode, executing in kernel space, with kernel protections. 

2. The wrapper intercepts some or all of the system calls made by the wrapped application. 

3. The wrapped application's interaction with the operating system and other processes is 
completely controlled by the wrapper, without context-switch overhead. 

This approach has been demonstrated for FreeBSD and Solaris operating systems and may be 
applicable to any operating system that supports dynamically loadable kernel modules. 

The development of wrappers for COTS operating systems is related to the development of 
operating system extensions, since both rely on kernel interfaces. Prototypes of SLIC 
[Ghormley 98], a system for efficiently inserting trusted extension code in existing operating 
system kernels, have been demonstrated for Solaris and Linux that interpose extensions on the 
kernel interfaces by modifying jump tables or by binary-patching kernel routines. Note that 
binary patching is a practice not condoned in DO-178B. The approach requires a well-defined 
interface to capture events and is limited in that new functionality can only be implemented in 
terms of existing functionality provided by the COTS operating system. This also requires a very 
detailed visibility into the internal workings of the RTOS; therefore, it is unlikely to be of much 
support for COTS RTOSs where this visibility is very limited. 
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Arguments associated with system service calls may not explicitly enumerate all the data 
necessary to implement effective wrappers. Access to additional data structures may be required 
including global structures, kernel structures, and user mode structures.   Utility functions to 
provide this access pose an additional complication in wrapper development and may require 
access to RTOS source code. 

5.3.5 COTS RTOS Hardening Via Wrappers 

The hardening of COTS RTOSs, through the use of wrappers, is the subject of recent research 
efforts. COTS RTOSs are being incorporated in systems that must be highly reliable, secure and 
safe.  Wrappers can be used to modify the influence of RTOS behavior on the system but may 
require internal visibility of the RTOS. If an RTOS fault response causes an undesirable system 
response, then a wrapper may possibly be used to alter its response to one that the system is able 
to handle; or alternatively, initiate a fault mitigation strategy within the wrapper.   In general, 
wrappers used in COTS software are limited in use, with respect to COTS RTOS. It is difficult 
to conceive how a wrapper could completely isolate the RTOS, considering that the services the 
RTOS provides may prohibit the effective integration of a wrapper, particularly on the hardware 
services side of the RTOS. Because of the pervasive role of the RTOS in controlling the entire 
system operation and the software applications that are executing on the RTOS, there not only 
needs to be wrappers between the RTOS and the APIs but also between the RTOS and the 
functions executing on it.   Wrappers may be useful for checking input and output parameter 
boundary values (input/output screening and data validity checking), but they cannot   for 
instance, protect against inconsistencies in global data variables.   It is not uncommon for the 
COTS RTOS vendor to include some built-in wrapper functionality in the COTS package, thus 
an additional wrapper layer by the integrator may be redundant at times.   COTS RTOSs to be 
used in a safety-related application may reveal that a wrapper in itself is not sufficient   In this 
case, access to source code seems essential. A survey of the aviation safety community shows 
that designers of systems targeted towards safety-related applications have only used COTS 
RTOSs that have the source code available. Many times these RTOSs are reverse engineered in 
an attempt to achieve the acceptance of the aviation safety community guidance. 

5.3.6 Wrappers and Software Assurance Levels. 

For safety-critical systems, the wrapper software development is treated as any other critical 
component and is to be developed under the certification objectives and guidance of DO-178B 
This means the certification of the wrapper must be obtained at the level of criticality appropriate 
for its function. As an interface between the COTS application program and the system RTOS 
the wrapper may require certification at the level of the RTOS, which will be comparable to the 
highest criticality in the system; however, certain implementations may allow the wrapper 
software to be treated as application code, which is properly isolated in space and time by the 
RTOS architecture. In this circumstance, the criticality level of the wrapper can be the same as 
that of the application, which may be lower than the highest criticality in the system. In this case 
certification required for the wrapper would then be according to the lower level of criticality. 

The complexity of wrapper software can range from simple parameter passing to very complex 
kernel operations.  The certification effort will vary according to the complexity and criticality 
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level of the wrapper. Careful consideration of the wrapper development and certification effort is 
required to determine the cost-effectiveness of the wrapper implementation, with due 
consideration of the benefits of reusing the COTS and existing COTS certification evidence. The 
safety-critical system designer must do a careful benefit analysis of using COTS and the 
development cost of the wrappers required to meet system requirements. The CPU overhead of 
implementing wrappers has been evaluated in a number of research prototype projects. The 
overhead penalty of a given wrapper is dependent on the complexity and nature of the interface 
with the kernel. Typical overheads reported in the literature range from 2% to 15%. 

As with all software, wrapper software is subject to design errors. The probability that design 
errors exist must be minimized through development processes such as described in DO-178B. 
Wrapper software must undergo verification testing appropriate to the criticality level. 
Functional testing with the COTS RTOS should include all the black box testing used to verify 
COTS functionality and to identify the COTS fault conditions addressed by the wrapper. Proper 
operation must be shown for all cases. Wrappers should be developed to the highest level of the 
software they are protecting. 

6. DEVELOPING AN RTOS SVA AND STRESS TEST PLAN (A CASE STUDY). 

This section describes how a software vulnerability analysis and potential stress test plan for an 
RTOS in a safety-critical environment could be developed. A specific RTOS that is being used 
by multiple aviation manufacturers was used as a baseline to represent the typical features of an 
RTOS. This particular RTOS is a real-time, pre-emptive, multitasking kernel designed for real- 
time, critical-embedded applications. The test plan is further augmented by considering testing 
additional features commonly found in other RTOSs. The stress test plan is developed 
considering the safety and protection mechanisms employed by RTOSs. The test plan describes 
a set of tests that can be used to verify some of the safety-enabling features of the RTOSs. 
Obviously, as mentioned in section 4.2, certain tests are dependent on how a particular feature is 
implemented in an RTOS. The test plan presented here is rather generic in nature and can be 
used as a baseline for evaluating multiple RTOSs. 

The start of any case study requires understanding the features of the RTOS under study. In the 
specific RTOS considered, task-handling methods, memory management methods, and 
interrupting handling methods are basic system facilities. Partitioning and/or other protection 
mechanisms are also considered. The following facilities and features are under review. 

• Task-Handling Method 

Task model 
Scheduling policies 
Priority levels 
Maximum number of tasks 
Critical section involved in task switch 
Minimum random access memory (RAM) required per task 
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• Memory Management Method 

Memory management model 
Maximum addressable memory space 
Memory protection method (including cache) 
MMU support 

• Interrupting Handling Method 

Interrupting handling model 
Is interrupting nesting enabled? If it is, how many nest layers are enabled? 
Minimum RAM required by interrupt 
Context switch section and timing 
Communication method between interrupt and tasks 

Once the features are understood, the SVA analysis can commence. The result of which could 
possibly provide a basis for the robustness and stress test plan, input into the SSA, and possibly 
affect the overall system design, such as providing system design and architecture considerations 
via wrappers. 

Conducting the SVA is an activity that requires a detailed understanding of the RTOS features 
and potential functional areas of concern as noted in section 4.2. The SVA itself is not presented 
here, however, having a base of expertise in the RTOS via the vendor or other users of the RTOS 
makes for a very effective approach. The detailed stress test plan offered is summarized in the 
table in appendix A. 

7. CONCLUSIONS AND RECOMMENDATIONS 

This report supports the idea that a separate RTOS SVA and the resultant development of 
appropriate robustness and stress tests may be a vehicle to be used to effectively assess certain 
safety implications of COTS RTOSs to meet the robustness objective of DO-178B. It also 
supports the use of this analysis as needed input for the SSA. 

Once the RTOS safety implications are understood, the following actions can be taken. 

1. Prevent the presence of defects in the RTOS (i.e., fault avoidance), which can be done by 
proper design assurance. 

2. Analyze and test the COTS RTOS and remove any defects if present. 

3. Protect against remaining defects  in the COTS using wrappers  or other similar 
techniques. 
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10. GLOSSARY. 

Combinatorial explosion - The condition of massive amounts of test cases that develop when 
testing all the combinations of paths that occur in a software system. 

Deactivated code - Executable object code (or data) which, by design, is either (a) not intended 
to be executed (code) or used (data), for example, a part of a previously developed software 
component, or (b) is only executed (code) or used (data) in certain configurations of the target 
computer environment, for example, code that is enabled by a hardware pin selection or 
software-programmed options. [RTCA SCI67] 

26 



Dead code - Executable object code (or data) which, as a result of a design error, cannot be 
executed (code) or used (data) in an operational configuration of the target computer 
environment and is not traceable to a system or software requirement. An exception is embedded 
identifiers. [RTCA SCI67] 

Deadlock - A situation where two or more tasks are forever suspended attempting to obtain two 
or more shared resources (e.g., semaphores). Since each task has the semaphore that the other 
needs, the tasks could suspend on the semaphores forever. 

Priority inheritance - A mechanism for avoiding priority inversion by temporarily boosting the 
priority of a task using a semaphore, while it owns the semaphore, to the maximum priority of all 
tasks that also uses the same semaphore. 

Priority inversion - A lower-priority task may get executed instead of a higher-priority task that 
is ready. Priority inversion occurs when a higher-priority task is suspended on a semaphore that 
a lower-priority task has, and the low-priority task, in turn, gets pre-empted by a middle-priority 
task. The middle-priority task gets to execute before the high-priority task. 

Robustness testing - A method of verification to demonstrate that software can continue to 
operate correctly despite invalid inputs. [RTCA SCI67] 

Stress testing - A method of testing that subjects the system to the extremes of real-world 
workloads, large data volumes, repetitive operations, and operations for extended periods of 
time. 
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APPENDIX A—SAMPLE TEST PLAN FOR COTS RTOS 

Some test cases are dependent on information about the target environment; however for this test 
plan, no system in particular was targeted. Lower level testing is also offered and visibility of the 
source code would be of benefit. 

It should be noted that the test cases presented are not comprehensive, and specific features of a 
particular RTOS will require additional or modified testing. Also, although the most common 
RTOSs features are considered for testing, some test cases listed may not apply at all to some 
RTOSs that lack a particular feature being tested. Whenever there is a correspondence, the test 
cases presented are cross-referenced to the vulnerabilities described in section 4.2, for a specific 
RTOS considered in that section. 

Test cases are presented. Some have correspondence to the RTOS vulnerable features described 
in section 4.2. 
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